
Introduction to the BFV FHE Scheme

Inferati Inc.

Washington, USA

1 Scope

This is the first article of a blog series about Fully Homomorphic Encryp-
tion (FHE) and its applications. In this article, we introduce the levelled
Brakerski/Fan-Vercauteren [Bra12, FV12] scheme, a Ring-Learning with Er-
rors (RLWE)-based cryptosystem.

2 Introduction

The Fan-Vercauteren (FV) scheme, (also known as the Brakerski-Fan-Vercauteren
(BFV) scheme) is considered as one of the second generation of FHE schemes
that is constructed based on the Ring-Learning with Errors (RLWE) prob-
lem [LPR13]. BFV is instantiated over two rings: 1) the plaintext ring which in-
cludes encodings of unencrypted or intelligible messages and 2) the ciphertext
ring which includes encrypted messages. Similar to any other FHE scheme,
BFV allows an untrusted party to induce meaningful computation over en-
crypted data without access to the decryption key. This is possible due to the
homomorphism property which offers a map (or function) between the plain-
text and ciphertext spaces that preserves the operations in these two spaces.

This can be illustrated concretely as follows. Let f be a function that maps
P → C, where P and C are mathematical structures (sets for e.g.) with a
defined binary operation ⋄, if for every x and y in P Equation (1) holds, then
f is a homomorphic map that preserves ⋄ between P and C.

f (x ⋄ y) = f (x) ⋄ f (y) (1)

As a simple numerical example, consider the homomorphism f (r) = 2r
that maps Z to Z, where Z is the set of all integers. Let x = −1, y = 4 and

1



⋄ = +. Let’s check if Equation 1 holds for f .

f (x + y) ?
= f (x) + f (y) (2)

f (−1 + 4) ?
= f (−1) + f (4)

f (3) ?
= −2 + 8

6 = 6

To reflect the above on FHE and for the sake of clarification, one can think
of f as the encryption function that maps plaintext messages in P to ciphertext
messages in C. The left side of Equation (1) corresponds to the encrypted re-
sult one would like to have after manipulating the encrypted messages on the
right side (homomorphic evaluation). Note that the results of manipulating
ciphertext messages in FHE are also encrypted.

There are a few worth noting points here that need to be emphasized:

• The aforementioned analogy is only illustrative, FHE includes more
complex mappings and spaces as we shall see later.

• f (r) preserves addition only. Applying Equation (1) with (⋄ = ×) does
not work.

• For the encryption scheme to be really FHE (i.e., able to compute arbi-
trary functions on data), it must preserve at least two operations: ad-
dition and multiplication. If the scheme supports only addition, it is
known as additive homomorphic scheme, whereas if it supports only
multiplication, it is known as multiplicative homomorphic scheme.

2.1 BFV Primitives

Now we have a basic idea of the notion of homomorphism, we can define the
basic primitives of BFV [ACC+

18].
BFV includes the following primitives:

• ParamGen(λ) → Params:
Parameter generator (ParamGen) takes as input the security parameter λ,
which is a number used to define the security level of BFV, and returns
a set of encryption parameters used in BFV. Possible values of λ with
increasing security level are 80, 128 and 256, with 80 being deprecated
according to the FHE standardization consortium [ACC+

18]. One can
view λ as the computational cost of successful attacks on the scheme. In
order for these attacks to succeed with probability 1, they would require
2λ basic computational operations.

• KeyGen(Params) → {SK, PK, EK}:
Key generation (KeyGen) takes as input the encryption parameters and

2



returns a set of keys: 1) the secret key (SK) which is mainly used for de-
cryption1, 2) the public key (PK) which is used for encryption and 3) the
evaluation key (EK) which is used to evaluate homomorphic operations
on ciphertexts as we shall see later. While SK should be kept private
by the user (sensitive data owner), PK and EK can be shared publicly
without affecting the security of the scheme.

• Encrypt(PK, M) → C:
Encrypt takes as input PK and a plaintext message M in the plaintext
space P , and returns a valid ciphertext C from the ciphertext space C.

• Decrypt(SK, C) → M:
Decrypt takes as input SK and a valid ciphertext C in C, which encrypts
message M in P , and returns M.

• EvalAdd(Params, EK, C(1), C(2)) → C(3):
EvalAdd takes as input the encryption parameters Params, EK, two valid
ciphertexts C(1) encrypting M(1) and C(2) encrypting M(2), and returns a
valid ciphertext C(3) encrypting (M(1)+M(2)).

• EvalAddConst(Params, EK, C(1), M(2)) → C(3):
EvalAddConst is similar to EvalAdd but with either of the operands is a
plaintext. For the input C(1) encrypting C(1), it outputs a ciphertext C(3)

encrypting (M(1)+M(2)).

• EvalMult(Params, EK, C(1), C(2)) → C(3):
EvalMult takes as input the encryption parameters Params, EK, two valid
ciphertexts C(1) encrypting M(1) and C(2) encrypting M(2), and returns a
valid ciphertext C(3) encrypting (M(1)×M(2)).

• EvalMultConst(Params, EK, C(1), M(2)) → C(3):
EvalMultConst is similar to EvalMult but with either of the operands is a
plaintext. For the input C(1) encrypting M(1), it outputs ciphertext C(3)

encrypting (M(1)×M(2)).

• Relinearize(Params, EK, C′) → C:
Relinearize takes as input the encryption parameters Params, EK and
an ill-shaped (more on this later) C′ encrypting M, and returns a well-
shaped compact C encrypting M.

Later on in this note, we provide a more concrete description of these
primitives alongside correctness analyses.

1The secret key can also be used for encryption in the symmetric mode of operation, i.e., SK
is used in encryption and decryption.

3



3 Plaintext and Ciphertext Spaces

The plaintext and ciphertext spaces in BFV are defined over two distinct poly-
nomial rings denoted by P = Rt = Zt[x]/(xn + 1) and C = Rq × Rq, where
Rq = Zq[x]/(xn + 1), n ∈ Z is the ring dimension and t ∈ Z and q ∈ Z are the
plaintext and ciphertext coefficients, respectively. The notation Za[x]/(xn + 1)
can be viewed as the set of polynomials with integer coefficients modulo both
a and (xn + 1), i.e., with coefficients in {

⌈
− a

2

⌉
, . . . ,

⌊
a−1

2

⌋
} and of degree less

than n. For efficiency purposes, n is usually set as a power of 2 integer. Note
that in practice, q is usually much greater than t, hence, the cardinality of C is
much larger than that of P , which also means a plaintext message M in P can
be mapped to multiple valid ciphertexts in C. The order (or number of distinct
elements) in Rt and Rq is tn and qn, respectively. Table 1 shows Examples of
valid plaintext messages for the parameters n = 4 and t = 5.

Table 1: Examples of valid plaintext messages for (n, t) = (4, 5)

M(0) 1 + 2x + 1x2 − 1x3

M(1) −1 − 2x − 1x2 + 2x3

M(2) 1 + 1x + 1x2 + 1x3

4 Parameters

We describe here the main parameters used in BFV.

Besides the plaintext and ciphertext space parameters (t, q, n) introduced
in Section 3, BFV uses a number of random distributions defined as follows:

• R2: is the key distribution used to sample polynomials with integer
coefficients in {−1, 0, 1}.

• X : is the error distribution defined as a discrete Gaussian distribution
with parameters µ and σ over R bounded by some integer β. Ac-
cording to the current version of the homomorphic encryption stan-
dard [ACC+

18], (µ, σ, β) are set as (0, 8√
2π

≈ 3.2, ⌊6 · σ⌉ = 19).

• Rq: is a uniform random distribution over Rq.

We note that the choice of the parameters (t, q, n) is application-specific
and is also driven by the desired security level. For a set of contemporary
accepted parameters, we refer the reader to Tables 1 and 2 in the homomor-
phic encryption standard [ACC+

18]. As a rule of thumb, one should opt for

4



minimizing these parameters so long as the application of interest can still be
implemented in FHE.

5 Plaintext Encoding and Decoding

Recall that the plaintext space is the polynomial ring Rt. This means that mes-
sages need to be converted to polynomials in Rt. This conversion is referred
to by encoding. The literature includes plenty of encoding schemes proposed
for FHE. We review here two simple schemes for integer datatypes.

Let m denote an integer message we would like to encrypt in FHE. The
first encoding scheme (let’s call it the naive encoding scheme) composes the
plaintext element (polynomial) as: M = m + 0x + 0x2 + · · ·+ 0xn−1. I.e., we
set M as a constant polynomial with m being the constant term. While this
encoding scheme is simple in principle, it is extremely inefficient especially
with large messages m. The reason is that while performing homomorphic
operations on ciphertexts, the magnitude of plaintext coefficients grow larger.
To ensure that the results of homomorphic evaluation matches the expected
results of the computation of interest, we need to ensure that the plaintext co-
efficients do not wrap around t2. Thus we need to ensure that t is sufficiently
larger than the inputs, any intermediate result and outputs of the computation
to be implemented in FHE. The naive encoding scheme exhibits a fast growth
of coefficients. We remark that this encoding scheme suffers from a more se-
rious limitation, that is, wasting n − 1 coefficients in the plaintext polynomial.
Other more efficient encoding schemes make use of a subset or even all of the
coefficients, known as packed or batched encoding schemes.

Decoding for this scheme works by simply reading the constant term of
the plaintext polynomial that results from decryption.

The other encoding scheme we would like to introduce, which is known
as the integer encoding scheme, works as follows:

1. represent m in binary representation m = an−1 · · · a2a1a0

2. compose M = an−1x + · · · + a2x2 + a1x + a0. Since n is too large in
practice, unused bits are set to 0.

Due to the smaller magnitude of plaintext coefficients, the coefficient growth
during homomorphic evaluation is typically slower. Note that homomorphic
evaluation with this encoding may cause the degree of the plaintext polyno-
mial to grow. To ensure that the results of homomorphic evaluation matches
the expected results of the computation of interest, we need to ensure that the
degree of the plaintext coefficient does not wrap around n and the coefficients
do not wrap around t.

2This applies to homomorphic computing via arithmetic circuits. Binary or base-p circuits
might tolerate such wrap around by design.

5



Note that for the integer encoding scheme, one can choose any integer
decomposition base other than 2 such as ternary, quaternary or k-ary base de-
composition. Decoding for the integer encoding scheme works by evaluating
the plaintext polynomial at k, i.e., computing M(k).

6 Key Generation

The secret key SK is generated as a random ternary polynomial from R2, a
polynomial of degree n with coefficients in {−1, 0,+1}.

The public key PK is a pair of polynomials (PK1,PK2) calculated as fol-
lows:

PK1 = [−1(a · SK+ e)]q (3)

PK2 = a

where a is a random polynomial in Rq, and e is a random error polynomial
sampled from X . The notation [·]q means that polynomial arithmetic should
be done modulo q. Note that as PK2 is in Rq, polynomial arithmetic should
also be performed modulo the ring polynomial modulus (xn + 1).

7 Encryption and Decryption

To encrypt a plaintext message M in P , one first generates three small random
polynomials u from R2 and e1 and e2 from X and returns the ciphertext C =
(C1,C2) in C as follows:

C1 = [PK1 · u + e1 + ∆M]q (4)

C2 = [PK2 · u + e2]q

The parameter ∆ is defined as the quotient of dividing q by t, i.e., ∆ = ⌊ q
t ⌋.

It is used to scale the message.
Decryption is performed by evaluating the ciphertext on the secret key as

follows and inverting the scaling factor applied in encryption:

M =

[⌊
t[C1 + C2 · SK]q

q

⌉]
t

(5)

In order to check why decryption works and under which conditions, let’s
expand Equation (5) as follows:

6



C1 + C2 · SK = PK1 · u + e1 + ∆M+ (PK2 · u + e2) · SK (6)
= −(a · SK+ e) · u + e1 + ∆M+ a · u · SK+ e2 · SK
= (((((−a · u · SK − e · u + e1 + ∆M+((((a · u · SK + e2 · SK
= ∆M− e · u + e1 + e2 · SK
= ∆M+ v

It should be noted that infinity norm of v, which is the largest absolute
coefficient in the polynomial v denoted by ∥v∥, is very small since e, e1, e2
and SK are all small polynomials. More concretely, given that these small
polynomials are bounded by the parameter β, it is straightforward to show
that∥v∥ ≤ nβ2 + β + nβ2 = 2nβ2 + β.

To carry on with the proof, we need to expand Equation (6) modulo q and
complete evaluating the decryption function. This can be done as follows:

C1 + C2 · SK = ∆M+ v + q · r (7)

where r is some polynomial. Scaling Equation (7) by t
q results in M+ t

q · v +

t · r. The rounding function in decryption removes t
q · v and the final modulo

t operation removes t · r and recovers M. In short, for decryption to recover M
correctly, we need to ensure that t

q ·∥v∥ < 1
2 , otherwise the noise will overflow

and destroy the message.

8 Homomorphic Evaluation

In this section, we explain how homomorphic evaluation procedures work.
Much of this section is based on the correctness analysis that can be found in
the proposal of BFV [FV12].

8.1 EvalAdd

Let’s take EvalAdd as a reference to understand how homomorphic addition
works. This procedure is quite simple, we just add the corresponding polyno-
mials in each ciphertext as shown in Equation (8).

EvalAdd(C(1),C(2)) = ([C
(1)
1 + C

(2)
1 ]q, [C(1)

2 + C
(2)
2 ]q) = (C

(3)
1 ,C(3)

2 ) = C(3) (8)

In order to see why this works, let’s break Equation (8) as follows: Assume
that C1 and C2 are fresh encryptions of M1 and M2. Algebraically, they can be
expressed as follows (See Equation (4)):

7



C(1) = ([PK1 · u(1) + e(1)1 + ∆M(1)]q, [PK2 · u(1) + e(1)2 ]q) (9)

C(2) = ([PK1 · u(2) + e(2)1 + ∆M(2)]q, [PK2 · u(2) + e(2)2 ]q)

By substituting the C(1) and C(2) in Equation (8) we get the following:

C(3) = (C
(3)
1 ,C(3)

2 ) (10)

= ([PK1 · (u(1) + u(2)) + (e(1)1 + e(2)1 ) + ∆(M(1) +M(2))]q,

[PK2 · (u(1) + u(2)) + (e(1)2 + e(2)2 )]q)

= ([PK1 · u(3) + e(3)1 + ∆(M(1) +M(2))]q, [PK2 · u(3) + e(3)2 ]q) (11)

It is straightforward to notice that Equation (11) has the form of a valid
ciphertext encrypting M(3) = M(1) +M(2). Note that the error term in C(3)

is approximately, following a worst-case scenario analysis, the sum of noise
terms in the input ciphertexts, i.e., the noise grows additively.

One can follow the procedure used above to derive the expression for Eval-
AddPlain, the plaintext message can be transformed to a ciphertext form by
encryption with no error terms, i.e., e1 = e2 = 0.

8.2 EvalMult

Homomorphic multiplication is more complex compared to homomorphic
addition. We present here the basic procedure and refer the reader to external
resources for further details.

It is useful to write the ciphertext as an evaluation at SK similar to what
we did in the derivation of decryption:

C(1)(SK) = ∆M(1) + v1 + q · r1 (12)

C(2)(SK) = ∆M(2) + v2 + q · r2

Multiplying the ciphertexts would give us:

(C(1) · C(2))(SK) =∆2M(1) ·M(2) + ∆(M(1) · v2 +M(2) · v1)+

q(v1 · r2 + v2 · r1) + q · ∆(M(1) · r2 +M(2) · r1)+

v1 · v2 + q2 · r1 · r2

(13)

The product ciphertext looks close to an encryption of what we want ∆ · [M(1) ·
M(2)]t. We notice that scaling by 1

∆ gives us exactly what we want in the first
term plus some noise. However, the last term (q2 · r1 · r2) would generate large

8



noise since q2 does not divide ∆. Instead, we would scale by the factor t
q .

Now, we can write M(1) ·M(2) = [M(1) ·M(2)]t + t · rM. We can also write
v1 · v2 = [v1 · v2]∆ + ∆ · rv. Scaling by t

q and substituting these expressions in
Equation (13), we obtain the following:

t
q
(C(1) · C(2))(SK) =∆[M(1) ·M(2)]t + (M(1) · v2 +M(2) · v1)+

t(v1 · r2 + v2 · r1) + rv + (q − [q]t) · (rM +M(1) · r2 +M(2) · r1)+

q · t · r1 · r2 +
t
q
[v1 · v2]∆−

[q]t
q

(∆M(1) ·M(2) +M(1) · v2 +M(2) · v1 + rv)

(14)

The final step in the derivation is reducing Equation (14) modulo q, which
gives us:

t
q
(C(1) · C(2))(SK) =∆[M(1) ·M(2)]t + (M(1) · v2 +M(2) · v1)+

t(v1 · r2 + v2 · r1) + rv−
[q]t(rM +M(1) · r2 +M(2) · r1) + re

(15)

, where re is the rounding error generated from the last two terms in Equa-
tion (14).

The noise growth for multiplication grows by a linear factor that is approx-
imately 2 · t · n2 ·∥SK∥, i.e.,

∥∥∥vp

∥∥∥ = ∥vi∥ · 2 · t · n2 ·∥SK∥, where vp is the noise
in the product ciphertext, and vi is the noise in the input ciphertexts.

In short, to evaluate EvalMult, we compute the tensor product of the input
ciphertexts and scale by t

q as follows:

EvalMult(C(1),C(2)) =

([⌊
t(C(1)

1 · C(2)
1 )

q

⌉]
q

,

[⌊
t(C(1)

1 · C(2)
2 + C

(1)
2 · C(2)

1 )

q

⌉]
q

,

[⌊
t(C(1)

2 · C(2)
2 )

q

⌉]
q

)
(16)

It can be noticed that EvalMult increases the number of terms in the result-
ing ciphertext from 2 to 3 ring elements. Moreover, in order to decrypt the
resulting ciphertext, a slightly different decryption procedure has to be used.
Fortunately, these complications can be resolved via Relinearization which will
be described in the subsequent section.

9



9 Relinearization

The main purpose of this procedure is to reduce the size of product cipher-
texts, those resulting from EvalMult, back to 2 ring elements. This problem
can be formulated concretely as follows: Let C∗ = {C∗

1 ,C∗
2 ,C∗

3}. Our goal is to
find Ĉ

∗
= {Ĉ∗

1 , Ĉ∗
2} such that:

[C∗
1 + C∗

2 · SK+ C∗
3 · SK2]q ≈ [Ĉ

∗
1 + Ĉ

∗
2 · SK+ r]q (17)

Access to SK2 is provided by means of the evaluation key EK = (−(a ·SK+
e) + SK2, a). Note that this is a masked version of SK2 since EK1 + EK2 · SK =

SK2 − e. Now we can compute Ĉ∗ as follows:

Ĉ
∗
1 = [C∗

1 + EK1 · C∗
3 ]q (18)

Ĉ
∗
2 = [C∗

2 + EK2 · C∗
3 ]q

If we write the decryption formula for Equation (18) we obtain:

Ĉ
∗
1 + Ĉ

∗
2 · SK = C∗

1 + EK1 · C∗
3 + SK · (C∗

2 + EK2 · C∗
3) (19)

= C∗
1 + C∗

2 · SK+ C∗
3 · (EK1 + EK2 · SK)

= C∗
1 + C∗

2 · SK+ C∗
3 · SK2 + C∗

3 · e

It should be noted that the term C∗
3 · e can be quite large as C∗

3 has coeffi-
cients in Zq. Nevertheless, there is a technique to reduce this error using base
decomposition. For further details, we refer the reader to [FV12].

10 Security of the Scheme

Analyzing the security of the BFV scheme is quite complex and beyond the
scope of this article. Choosing optimal BFV parameters that maximize per-
formance and respect security and functionality constraints is an art that is
practiced by expert cryptographers. That said, for a brief security analysis
and a set of recommended parameters for BFV (and other FHE schemes), we
refer the reader to the homomorphic encryption standard [ACC+

18].

References

[ACC+
18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi

Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim
Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin
Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan.
Homomorphic encryption security standard. Technical report, Ho-
momorphicEncryption.org, Toronto, Canada, November 2018.

10



[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical gapsvp. In Annual Cryptology Conference,
pages 868–886. Springer, 2012.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. 2012. https://eprint.iacr.org/2012/144.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. Journal of the ACM
(JACM), 60(6):1–35, 2013.

11


