
Introduction to the CKKS/HEAAN FHE
Scheme

Inferati Inc.

Washington, USA

Scope

We continue our blog series on Fully Homomorphic Encryption (FHE) and its
applications. In the previous article, we introduce the readers to the levelled
Brakerski-Gentry-Vaikuntanathan BGV scheme [BGV14]. Here, we present
the 3rd article in this series and talk about the Cheon-Kim-Kim-Song FHE
scheme [CKKS17].

Contents

1 Introduction 3
1.1 BGV Ciphertext Structure . 5

1.2 CKKS Ciphertext Structure . 5

2 Plaintext and Ciphertext Spaces 6

3 Plaintext Encoding and Decoding 6

4 Parameters 7

5 Key Generation 7

6 Encryption and Decryption 8

7 Homomorphic Evaluation 8
7.1 EvalAdd . 9

7.2 EvalMult . 9

8 RESCALE 9

9 Intuition of Multiplication in CKKS 10

1

10 Security of the Scheme 12

A Fixed-Point Arithmetic 15
A.1 Q Format . 15

A.2 Arithmetic Operations . 15

A.2.1 Conversions . 15

A.2.2 Addition and Subtraction 16

A.2.3 Multiplication and Division 16

2

1 Introduction

CKKS, a.k.a. Homomorphic Encryption for Arithmetic of Approximate Num-
bers (HEAAN), was proposed to offer homomorphic computation on real
numbers. The main idea is to consider the noise, a.k.a. error e, which is
introduced in Ring-Learning with Errors (Ring-LWE) based FHE schemes for
security purposes, as part of the message µ (which we call here payload) we
want to encrypt. The payload and the noise are combined to generate the
plaintext (µ + e) that we encrypt.

Thus, the encryption procedure takes in (µ + e) as input and generates a
ciphertext that encrypts an approximate value of our payload. The rationale
behind this is that if the noise is much lower in magnitude compared to the
payload, it might not have a noticeable effect on the payload or results of com-
puting over the payload. In fact, even in the normal context without consid-
ering encryption, computers use fixed-point or floating-point representations
to handle real data. Some real data cannot be represented exactly using these
systems, and all we can do is to approximate them with a predefined precision
via standard truncation or rounding procedures. This approximation results
in errors that can accumulate and expand during computation. But for most
realistic scenarios, the errors are not much significant and the final result is
therefore satisfactory. Therefore, we sort of can think of the RLWE error in the
encrypted domain as truncation or rounding error in the clear domain.

Similar to other FHE schemes, in CKKS, as we compute on ciphertexts,
the plaintext (which includes the payload and the error) magnitude grows.
If we add two ciphertexts, the growth is limited, but, if we multiply them,
the growth is rather higher. Take an example µ1 = 2.75 and µ2 = 3.17. The
product of µ1 · µ2 = 8.7175. Clearly, the number of digits in the product has
doubled. Assuming we fixed the precision at two decimal digits, the product
can be scaled down by 100 to produce µ̂× = 8.71 (if we use truncation) or
µ̃× = 8.72 (if we use rounding). Generally speaking, both values are good
approximates of the exact value of the product adequate for most realistic
scenarios. In this rather simplified example the precision is only 2 decimal
digits, in IEEE-754 single- and double-precision standards, the precision is
fixed at 7 and 15 digits, respectively, providing much more accurate results.

While scaling down is a trivial procedure in the clear domain, it is gen-
erally quite expensive in the encrypted domain. Earlier solutions suggest
approximating the rounding function as a polynomial for extracting and re-
moving lower digits of encrypted values [HS15, CH18]. We know that FHE
is ideally well suited for evaluating polynomials on encrypted data making
this approach sensible and straightforward to implement. Unfortunately, this
approach is computationally expensive and may not be practical for general
scenarios due to the large degree of these polynomials. This, however, has
entirely changed after CKKS.

3

At the heart of the CKKS scheme is a mechanism, called RESCALE, that
is used to reduce the magnitude of the plaintext (payload and noise). This
procedure can be used to simulate the truncation procedure very efficiently.
CKKS employed the commonly known FHE procedure MODSWITCH (short
for modulus switching) that is mostly used in the BGV scheme, as described
in our previous article, to implement this rescaling functionality. In fact, one
shall soon notice the great similarity between the two schemes.

CKKS decryption generates an approximate value of the payload (µ + e)
with adequate precision. Only if the magnitude of the error is much smaller
than that of the payload, this would be acceptable. Fortunately, this is gener-
ally the case - given that the scheme is parameterized wisely - since the noise
can be controlled as will be described later.

CKKS RESCALE provides a natural way to compute on encrypted real
numbers unlike other FHE schemes (such as Fan-Vercauteren (FV) [FV12] or
Brakerski-Gentry-Vaikuntanathan (BGV) [BGV14]) that compute naturally on
integers. It should be remarked that one can perform homomorphic computa-
tion on encrypted real numbers using BFV and BGV, but that requires sophis-
ticated (and generally inefficient) encoding procedures [CSVW16]. Moreover,
scaling down the results during computation is rather difficult.

noise budget 𝜇𝑒

𝑞

payloadnoise

𝑡

payload
budget

BGV ctxt

(noise and payload) budget 𝑒𝜇CKKS ctxt

𝑞

payload+noise

MSB

MSB

Figure 1: Ciphertext structure in the BGV and CKKS schemes. MSB stands
for most significant bit. Adapted from [CKKS17].

To get an idea of how CKKS works, Figure 1 can be of aid. The figure
shows the ciphertext structure of BGV and CKKS. The ciphertext in BGV and
CKKS (and even for BFV) is typically a pair of polynomials. One polynomial
contains the payload information while the other is used for decryption. The
coefficients of these polynomials are bounded by the integer q, known as the
ciphertext coefficient modulus, that is, they can take any value between 0

4

and q − 1. Without loss of generality and for ease of illustration, suppose
the polynomials are of degree 0. In Figure 1, we show the polynomial that
contains the payload information in both BGV and CKKS schemes.

1.1 BGV Ciphertext Structure

Let’s first study the BGV ciphertext structure. It is useful to keep this analogy
in mind and think of the ciphertext as a bounded space. The green-colored
areas are the open space an entity may reside in. The space in our ciphertext
is bounded by the value of q. Two main entities are of particular interest, the
payload µ and the noise e. In BGV, these two components are separated and
should not interact at any stage of the computation, otherwise, the payload
will be lost. The separation is simply done by scaling the noise component e
by t during encryption. This will shift the error to the left by t as depicted in
Figure 1 (BGV ctxt). The payload can freely move in the space bounded by t,
i.e., taking any value between 0 and t− 1. This should be maintained during
homomorphic computation as well. The noise component e is free to move in
the space bounded by t to q− 1 (actually less than that but let’s not get into
details to keep the illustration simple). As long as the error or the payload
resides in their respective space, decryption works and the expected payload
or computed results can be retained with zero loss in precision.

1.2 CKKS Ciphertext Structure

The ciphertext in the CKKS scheme has a slightly different structure. Firstly,
the two main components µ and e are combined to form one single entity. The
noise is part of the payload. As a matter of fact, there is no way of separat-
ing these two components (to their exact values) after encryption. This larger
entity can now move freely in the space bounded by q. One might legiti-
mately wonder that combining µ and e might distort or corrupt the payload,
especially if the payload is of small magnitude (same order of e). This is a
valid concern and addressing it is quite simple, CKKS scales the payload by
a parameter, known as the scale factor ∆. This will move the most significant
bits of the payload to the left farther from e. The assumption is that the least
significant bits of µ, which will be distorted by adding e, are not of much
significance which happens to be true in practice. To help you see why this is
the case, let’s work out the following example.

Example 1.1. Let µ = π = 3.14159265358979323846 . . ., e = 20 and ∆ = 106.
Assume we are using truncation for trimming down the least significant digits
after scaling.
We have ∆ · µ + e = 3141592 + 20 = 3141612, which is still a good approxima-
tion of the scaled payload.

If we want to retrieve the original payload, we can simply divide by the
scale factor. Thus we have, 3141612/106 = 3.141612 which is, generally speak-
ing, still a good approximation of π. We could get a better approximation if

5

we used a larger ∆.

Before we delve further into describing CKKS primitives more concretely,
it would be good to brush up on fixed-point arithmetic since what CKKS
does, is actually simulating fixed-point arithmetic in the encrypted domain.
We refer the reader to Appendix A for an overview of fixed-point arithmetic.

2 Plaintext and Ciphertext Spaces

In CKKS, the plaintext and ciphertext spaces are almost the same. They in-
clude elements of the polynomial ring Rq = Zq[x]/ f (x), where q is an integer
called the coefficient modulus and f (x) is a polynomial known as the poly-
nomial modulus. Elements of Rq are polynomials with integer coefficients
bounded by q. Their degrees are also bounded by the degree of f (x). The most
common choice of f (x) in the literature is f (x) = xn + 1 with n (known as the
ring dimension) being a power of 2 number. The difference between CKKS
plaintext and ciphertext instances is the number of ring elements they con-
tain. An instance of CKKS plaintext includes one ring element (polynomial)
whereas an instance of CKKS ciphertext includes at least 2 ring elements.

The previous paragraph might be thought of as contradicting to what
CKKS was originally proposed for, i.e., computing on encrypted real numbers
since the plaintext is a polynomial with integer coefficients. The key idea to
note is that, CKKS proposes new encoding and decoding (codec) techniques,
that will be described later, to map a vector of real numbers (more precisely
complex numbers) into the plaintext space and vice versa. As we mentioned
previously, CKKS simulates fixed-point arithmetic operations which can be
done on integral operands via integer operations.

3 Plaintext Encoding and Decoding

Another main contribution of the CKKS work [CKKS17] is a new codec method
that maps a vector of complex numbers into a single plaintext object and vice
versa. Encoding works as follows, given an n

2 -vector of complex numbers
z ∈ C

n
2 , return a single plaintext element a ∈ R. Decoding does reverse

encoding by taking a plaintext element and returning a vector of complex
numbers. This is done using Equation 1. The map π is the complex canonical
embedding which is a variant of the Fourier transform.

ENCODE(z, ∆) = b∆ · π−1(z)e

DECODE(a, ∆) = π(
1
∆
· a)

(1)

It should be clear by now the connection between the CKKS codec scheme
and fixed-point representation. While we encode the input payload, scaling is

6

done by multiplying by ∆ and removal of least significant fractional parts is
done via rounding. In decoding, we reverse this procedure. Multiplying by ∆
and rounding in encoding and division by ∆ in decoding are similar to what
we did in fixed-point encoding in Equation 15.

4 Parameters

So far, we came across the parameters n, q and ∆. CKKS uses the following
additional Ring-LWE-specific distributions in its instantiation:

• R2: is the key distribution used to uniformly sample polynomials with
integer coefficients in {−1, 0, 1}.

• X : is the error distribution defined as a discrete Gaussian distribution
with parameters µ and σ over R bounded by some integer β. Ac-
cording to the current version of the homomorphic encryption stan-
dard [ACC+

18], (µ, σ, β) are set as (0, 8√
2π
≈ 3.2, b6 · σe = 19).

• Rq: is a uniform random distribution over Rq.

Regarding the choice of the parameters (q, n), the same discussion we
made in the BFV article also applies here. One thing to note is that q should
be large enough to support the desired multiplicative depth of the computed
circuit. Given the value of q is fixed, n is determined to provide a suffi-
cient security level. For this purpose, an RLWE hardness estimator can be
used [APS15].

We remark that, unlike the BFV scheme we described in our first article,
CKKS is a scale-variant scheme. This means that at each level, there is a
different coefficient modulus. Remember, as we perform homomorphic mul-
tiplication, the ciphertext is scaled down by ∆. This results in reducing the
size of q by ∆ and we end up in a ring whose coefficient modulus is q′ = q

∆ .
Hence, hereafter, we refer to the coefficient modulus at level l by ql , where
1 ≤ l ≤ L, and L is the level of a freshly encrypted ciphertext. Therefore, our
ciphertext coefficients are related to each other by:

qL > qL−1 > . . . > q1 (2)

5 Key Generation

This procedure is quite similar to the Key Generation procedure in BFV. We
sample the secret key SK an element from R2, i.e., a polynomial of degree n
with coefficients in {−1, 0,+1}.

7

The public key PK is a pair of polynomials (PK1,PK2) calculated as fol-
lows:

PK1 = [−a · SK+ e]qL (3)

PK2 = a U←− RqL (4)

Thus, a is a random polynomial sampled uniformly from RqL , and e is a ran-
dom error polynomial sampled from X . Recall that the notation [·]qL implies
that polynomial arithmetic should be done modulo qL. Note that as PK2 is in
RqL , polynomial arithmetic should also be performed modulo the ring poly-
nomial modulus (xn + 1).

6 Encryption and Decryption

To encrypt a plaintext message M in R (which is an encoding of the input
payload vector). We generate 3 small random polynomials u from R2 and e1
and e2 from X and return the ciphertext C = (C1,C2) in R2

ql
as follows:

C1 = [PK1 · u + e1 +M]ql (5)

C2 = [PK2 · u + e2]ql

The only difference between encryption in CKKS from that in BFV is that
we do not scale M by a scalar. Note that we can encrypt and generate a
ciphertext at any level l.

Decryption is performed by evaluating the input ciphertext in level l on
the secret key to generate an approximate value of the plaintext message:

M̂ = [C1 + C2 · SK]ql (6)

We leave the proof of why decryption works to the reader as an exercise.
You might want to review our BFV article for some help on how to tackle this
challenge.

7 Homomorphic Evaluation

We move now to describe how homomorphic operations are performed in
CKKS. We are interested in two operations, homomorphic addition and ho-
momorphic multiplication. The former is quite similar to that of BFV. The
latter needs to be followed by rescaling to maintain the precision of computa-
tion unchanged.

8

7.1 EvalAdd

Similar to BFV EvalAdd, we just add the corresponding polynomials in the
input ciphertexts as shown in Equation (7). Note that the input ciphertexts
are assumed to be on the same level with the same scale. If that is not the
case, we need to scale down the ciphertext at the higher level to match the
scale and level of the other ciphertext.

EvalAdd(C(1),C(2)) = ([C
(1)
1 + C

(2)
1]ql , [C

(1)
2 + C

(2)
2]ql) = (C

(3)
1 ,C(3)

2) = C(3) (7)

7.2 EvalMult

Again, this procedure proceeds similar to EvalMult in BFV. The derivation is
also similar to what we did in BFV and we leave it to the reader as an exercise.
We only show how to compute EvalMult on two ciphertexts as follows:

EvalMult(C(1), C(2)) =

(
[C

(1)
1 · C

(2)
1]ql , [C

(1)
1 · C

(2)
2 + C

(1)
2 · C

(2)
1]ql ,

[C
(1)
2 · C

(2)
2]ql

)
= (C

(3)
1 ,C(3)

2 ,C(3)
3) = C(3)

(8)

Note that C(3) contains 3 polynomials unlike the input ciphertexts; each
containing 2 polynomials. To reduce the size of C(3) to 2 polynomials, we use
the Relinearization procedure which is identical to that we described in BFV
except the computation should be done in Rql . Once we apply the relineariza-
tion procedure, we would end up with a non-expanded ciphertext (i.e., with
2 polynomials) that encrypts the product but with a squared scale factor ∆2.
In fact, in CKKS, we can multiply two ciphertexts with different scale factors
∆1 and ∆2 and the product will have ∆1 · ∆2 as a scale factor. This is also
possible in fixed-point arithmetic in the clear domain. We just need to ensure
that the product fits in the datatype used to store the integer value and no
wrap around (integer overflow) happens. Dealing with mixed scale factors
can complicate the computation as it requires tracking of the scales. Thus, to
keep the illustration simple, we stick to the case where the scale factor is fixed
along the entire computation. We remark that the levels of the ciphertexts
must match before we can execute EvalMult.

8 RESCALE

This procedure does not exist in the scale-invariant version of BFV we dis-
cussed in our first article. It is worth mentioning that BFV can also be instan-
tiated as a scale-variant scheme. In that case, a procedure called MODSWITCH
can be used to switch between the ciphertext coefficient moduli. CKKS adapted
the MODSWITCH procedure and called it RESCALE. Mathematically, they are

9

the same, but they serve two different purposes. The main purpose of using
it in CKKS is typically to reduce the scale factor after multiplication to match
that of the input ciphertexts. The procedure is quite simple and computation-
ally efficient, it takes a ciphertext C ∈ R2

ql
and scales it down by ∆ to generate

an equivalent ciphertext Ĉ ∈ R2
ql−1

encrypting the same plaintext but with re-
duced scale factor and reduced noise. This procedure simulates the rescaling
step (1

2 f) in Equation 18 but in the encrypted domain.

RESCALE(C, ∆) =
1
∆
· [C1,C2]ql = [Ĉ]ql−1 (9)

9 Intuition of Multiplication in CKKS

As we said previously, CKKS simulates fixed-point arithmetic in the encrypted
domain. Figures 2 and 3 can help in understanding how this can be realized.
First, we study how homomorphic multiplication works in BGV. Again, we
assume our ciphertext has 2 polynomials, each with a single coefficient. Also,
we only focus on the polynomial that contains the payload.

𝜇1𝑒1

𝑞

𝑡

BGV ctxt1

𝜇2𝑒2

𝑞

𝑡

BGV ctxt2

⨂

𝑒′×

𝑞

𝑡

BGV
ctxtMult

𝜇1𝜇2

𝑒×

𝑞′ = 𝑞 ⋅ 𝑝−1
𝑡

MODSWITCH(BGV
ctxtMult)

𝜇1𝜇2

𝑝

Figure 2: Ciphertext multiplication in BGV. Adapted from [CKKS17].

As shown in Figure 2, multiplication causes both components (payload)
and noise to grow in magnitude. The multiplication result is contained within

10

the space bounded by t, i.e., in the lower bits of the coefficient. The noise in
the product grows similarly and takes some space from the noise budget. As
mentioned previously, as long as the payload and noise are separate, decryp-
tion works successfully and the payload can be retrieved without errors. To
obtain more intuition about the product ciphertext structure, let’s work out
the following algebraic equation:

µ1 · µ2 + e′× = (te1 + µ1) · (te2 + µ2)

= t2e1e2 + t(e1µ2 + e2µ1) + µ1µ2
(10)

To reduce the noise growth after multiplication, BGV includes a method
called MODSWITCH that takes as an input a ciphertext C encrypting plain-
text M with coefficient modulus q and returns an equivalent ciphertext C′

that encrypts the same plaintext but with a different coefficient modulus q′.
Normally, q′ =

q
p

to reduce the noise, with p being a number that divides q.

Notice that this operation scales down the noise without affecting the payload
component. The reason is that we choose q′ such that Equation 11 is satis-
fied. In other words, from t’s perspective, q and q′ are just the same. More
concretely, we can work it out as shown in Equation 12.

q ≡ q′ mod t (11)

q ≡ q′ mod t

q ≡ q
p

mod t

q ≡ q · p−1 mod t

1 ≡ p−1 mod t

(12)

From the above derivation, it is straightforward to see that multiplying
by p−1 is equivalent to multiplying by 1 modulo t. Therefore, the payload
does not get affected by MODSWITCH given that the constraint specified in
Equation 11 is satisfied. Note that after invoking MODSWITCH, the ciphertext
moves from the level associated with q to the next lower level associated with
q′.

A slightly different behavior happens in CKKS. Figure 3 illustrates the
inner working of CKKS homomorphic multiplication. The input plaintexts,
each including payload and noise components merged as one chunk, are mul-
tiplied to generate the product of the payloads distorted by the multiplication
error. We can work out Equation 13 similar to what we did in the BGV case.

∆2µ1 · µ2 + e′× = (∆µ1 + e1) · (∆µ2 + e2)

= ∆2µ1µ2 + ∆(µ1e2 + µ2e1) + e1e2
(13)

This is almost what we want except that the product payload is scaled
by ∆2. To maintain the product at the same scale as the input, that is by ∆,

11

we can use MODSWITCH, which is called RESCALE in CKKS terminology,
to scale down the product by ∆ and reduce the magnitude of multiplication
noise. This step is similar to what we did in FPMul 18 to maintain the scale
and precision fixed. Note that satisfying constraint 11, is no longer required
for CKKS.

𝑞

CKKS ctxt1

𝜇2 𝑒2

𝑞

CKKS ctxt2

⨂

𝑞

CKKS
ctxtMult

𝑞′ = 𝑞 ⋅ Δ−1

RESCALE(CKKS
ctxtMult) Δ

𝑒×

𝜇1 𝑒1

𝑒′×𝜇1𝜇2

𝜇1𝜇2

Figure 3: Ciphertext multiplication in CKKS. Adapted from [CKKS17].

10 Security of the Scheme

As we have seen previously, CKKS includes significant similarities with other
RLWE-based FHE schemes (BGV in particular). However, in terms of security,
there is an important difference that was highlighted in a recent work [LM21].
An efficient passive attack was proposed against CKKS. The attack can be
launched by a passive adversary (Eve) who has the following capabilities:

1. Access for an encryption oracle: this means that Eve can choose a num-
ber of messages as she wishes and ask for encrypting them to generate
valid corresponding ciphertexts. This is a very reasonable assumption
since FHE can be deployed as a public-key encryption scheme, that is,
the encryption key is publicly available and anyone can access it. Even

12

if FHE is deployed in secret-key mode, this is still a reasonable assump-
tion and it forms the basis of a commonly-known attack model INDis-
tinguishability under Chosen Plaintext (IND-CPA).

2. Ability to choose the function that would be evaluated homomorphi-
cally. This is also a reasonable assumption since Eve could be the server
itself that is responsible for executing the outsourced homomorphic com-
putation.

3. Access to a decryption oracle: this means that Eve can choose a cipher-
text and ask for its decryption. This is not a very far-fetched assumption
as the decryption result might be shared after computation. Some ap-
plications might require the server to know certain decrypted values (to
be provided in the clear by the client after decryption) to proceed with
the application.

An attack model with the aforementioned properties is now known as
IND-CPA+ [LM21]. It can be seen as an attack model that is in between IND-
CPA and IND-CCA. While BFV and BGV are both secure under IND-CPA+, the
vanilla CKKS is not. Without getting much into details, the attack exploits
linearity in the decryption function in CKKS and the fact that approximate
decryption results provide hints on the RLWE errors. Via simple algebraic
manipulations, the entire secret key can be recovered in one attack attempt
(in the best-case scenario). The computational requirement of this attack is
finding the inverse of a polynomial in Rq which can be found easily using a
variant of the Extended Euclidean algorithm and Bezout’s identity which can
be solved in the worst-case scenario in O(n2 log n).

In response to this vulnerability, the attack proposers suggested tweaking
the decryption function in CKKS by adding extra noise to the decryption
result before publishing it to conceal the underlying RLWE noise. An open
research problem is how to find tight bounds on the added noise such that
CKKS is still secure under IND-CPA+ and the computational precision is not
affected.

We remark that if the decryption result is never meant to be published or
shared with untrusted parties, one can still use vanilla CKKS with no concerns
about its security.

13

References

[ACC+
18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi

Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim
Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin
Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan.
Homomorphic encryption security standard. Technical report, Ho-
momorphicEncryption.org, Toronto, Canada, November 2018.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (lev-
eled) fully homomorphic encryption without bootstrapping. ACM
Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

[CH18] Hao Chen and Kyoohyung Han. Homomorphic lower digits re-
moval and improved fhe bootstrapping. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 315–337. Springer, 2018.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song.
Homomorphic encryption for arithmetic of approximate numbers.
In International Conference on the Theory and Application of Cryptology
and Information Security, pages 409–437. Springer, 2017.

[CSVW16] Anamaria Costache, Nigel P Smart, Srinivas Vivek, and Adrian
Waller. Fixed-point arithmetic in she schemes. In International Con-
ference on Selected Areas in Cryptography, pages 401–422. Springer,
2016.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. IACR Cryptol. ePrint Arch., 2012:144,
2012.

[HS15] Shai Halevi and Victor Shoup. Bootstrapping for helib. In Annual
International conference on the theory and applications of cryptographic
techniques, pages 641–670. Springer, 2015.

[LM21] Baiyu Li and Daniele Micciancio. On the security of homomor-
phic encryption on approximate numbers. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 648–677. Springer, 2021.

14

Appendices

A Fixed-Point Arithmetic

Fixed-point arithmetic can be used to operate on “finitely-precisioned” real
numbers using integer operands and operations. The basic idea is to interpret
these integers to represent fractional numbers. We assume a decimal or binary
point fixed (hence the name fixed-point) at a specific location in the number
representation. As we operate on these integers, we keep track of the position
of the point and ensure it is not affected by multiplication or division.

It is crucial to understand that fixed-point numbers represented as integers
have a scaling factor that is (> 1 or < 1). For instance, if we used a fixed-point
number represented as integer 17 associated with a scaling factor 1/10, then
what we are actually referring to is 1.7.

A.1 Q Format

Qm. f is a format used to describe the parameters of a fixed-point representa-
tion system, with m being the number of digits used for the integral part, and
f being the number of digits in the fractional part. We assume signed repre-
sentation (2’s complement). The sign bit is usually not counted, thus in a Q3.4
format, our fixed-point format has 1 bit for the sign, 3 bits for the integral part
(m = 3) and 4 bits for the fractional part (f = 4). The resolution of the fixed-
point format (similar to machine epsilon in floating-point systems) is defined
as 2− f . For instance, epsilon is 2−23 in IEEE-754 single-precision and 2−52 in
IEEE-754 double-precision. In our Q3.4 format, epsilon is 2−4 = 0.0625.

The dynamic range of a signed fixed-point format is bounded by (a, a +
2− f , a + 2− f , . . . , b− 2− f , b), where a and b are the minimum and maximum
values supported by the format defined as follows:

a = −2m

b = 2m − 2− f (14)

Thus, in our Q3.4 format, the minimum supported number is −23 = −8,
and the maximum number is 23 − 2−4 = 8− 2−4 = 7.9375, i.e., Q3.4 has the
dynamic range {−8,−7.9375, . . . , 7.9375} with fixed step 2−4 = 0.0625.

A.2 Arithmetic Operations

A.2.1 Conversions

To convert a real number a with finite-precision to a Qm. f fixed-point number,
simply multiply it with 2 f and truncate/round the fractional bits to integer.

15

The inverse conversion can be computed by dividing the fixed-point number
by 2 f .

R2FP(a) = RoundToInt or Truncate(a · 2 f)

FP2R(a) =
a

2 f

(15)

A.2.2 Addition and Subtraction

Adding two fixed-point numbers is easy given that their scale is the same.

FPAdd(a1, a2) = a1 + a2 (16)

Subtraction works similarly as shown below. Note that neither addition
nor subtraction changes the scale factor, or they do not change the place of
the decimal/binary point.

FPSub(a1, a2) = a1 − a2 (17)

A.2.3 Multiplication and Division

Multiplication is a bit trickier than addition as it results in changing the re-
sult’s scale factor. Remember that we use a fixed-point format in which the
position of the decimal/binary point is fixed. Therefore, multiplication is typ-
ically followed by rescaling to make the scaling factor of the result unchanged.
Assuming the scaling factors of the inputs are identical, multiplication can be
calculated as follows:

FPMul(a1, a2) = (a1 ∗ a2)/2 f (18)

Division can be calculated similarly but we multiply by the scale factor as
follows:

FPDiv(a1, a2) = (a1/a2) ∗ 2 f (19)

We provide below an example of how to perform fixed-point arithmetic in
Q15.16. The example was generated using C++. The real values of a and b are
defined using the datatype float. The output precision was set to 9 using the
command cout.precision(std::numeric limits<float>::max digits10). For
each operation, we show 3 outputs;

1. fixed-point result of the fixed-point operation,

2. converted result from fixed-point to float

3. the result as performed using IEEE-754 single-precision operations which
can be used to serve as ground truth.

16

As we can see, the calculated results in fixed-point arithmetic are slightly
less accurate compared to IEEE-754 single-precision operations. Our sample
code and its output are provided below for reference.

1 #include <iostream >

2 #include <math.h>

3 #include <limits >

4

5 using namespace std;

6

7 const int f = 16;

8 const int scaleFactor = (1 << f);

9 typedef std:: numeric_limits <float > flt;

10

11 #define FloatToFixed(x) (x * (float)scaleFactor)

12 #define FixedToFloat(x) ((float)x / (float)scaleFactor)

13

14 #define Add(x, y) (x+y)

15 #define Sub(x, y) (x-y)

16 #define Mul(x,y) ((int64_t)((int64_t)x*y)/scaleFactor)

17 #define Div(x,y) ((int64_t)((int64_t)x*scaleFactor)/y)

18

19 int

20 main ()

21 {

22 cout.precision(flt:: max_digits10);

23

24 float float_a = 1.3, float_b = 2.7;

25

26 int fixed_a = FloatToFixed (float_a);

27 int fixed_b = FloatToFixed (float_b);

28

29 int fixedAdd = Add(fixed_a , fixed_b);

30 int fixedSub = Sub(fixed_a , fixed_b);

31 int fixedMul = Mul(fixed_a , fixed_b);

32 int fixedDiv = Div(fixed_a , fixed_b);

33

34 cout << "Output precision = " << flt:: max_digits10 << " decimal

digits\n";

35 cout << "scale factor = (2^" << f << " = " << scaleFactor << ")"

<< endl << endl;

36 cout << "a (float) = " << float_a << endl;

37 cout << "b (float) = " << float_b << endl << endl;

38

39 cout << "a (fixed): " << fixed_a << endl;

40 cout << "b (fixed): " << fixed_b << endl;

41

42 cout << "\nfixed add (fixed): " << fixedAdd << endl;

43 cout << "fixed add (float): " << FixedToFloat(fixedAdd) << endl;

44 cout << "float add (float): " << float_a+float_b << endl;

45

46 cout << "\nfixed sub (fixed): " << fixedSub << endl;

47 cout << "fixed sub (float): " << FixedToFloat(fixedSub) << endl;

48 cout << "float sub (float): " << float_a -float_b << endl;

49

50 cout << "\nfixed mul (fixed): " << fixedMul << endl;

17

51 cout << "fixed mul (float): " << FixedToFloat(fixedMul) << endl;

52 cout << "float mul (float): " << float_a*float_b << endl;

53

54 cout << "\nfixed div (fixed): " << fixedDiv << endl;

55 cout << "fixed div (float): " << FixedToFloat(fixedDiv) << endl;

56 cout << "float div (float): " << float_a/float_b << endl;

57

58 return 0;

59 }

1 Output precision = 9 decimal digits

2 scale factor = (2^16 = 65536)

3

4 a (float) = 1.29999995

5 b (float) = 2.70000005

6

7 a (fixed): 85196

8 b (fixed): 176947

9

10 fixed add (fixed): 262143

11 fixed add (float): 3.99998474

12 float add (float): 4

13

14 fixed sub (fixed): -91751

15 fixed sub (float): -1.40000916

16 float sub (float): -1.4000001

17

18 fixed mul (fixed): 230028

19 fixed mul (float): 3.50994873

20 float mul (float): 3.50999999

21

22 fixed div (fixed): 31554

23 fixed div (float): 0.48147583

24 float div (float): 0.481481463

18

